140 research outputs found

    Myofibromatose infantile infratemporale

    Get PDF
    La myofibromatose infantile est une affection proliférative mésenchymateuse rare de l'enfance (1 / 400 000). Ce processus tumoral bénin peut intéresser les tissus mous, les muscles, l’os et rarement les viscères. elle peut se  présenter sous une forme solitaire ou multicentrique. La localisation cervico-faciale intéresse 30% des cas. dans la littérature la localisation  infratemporale est très rare. Nous présentons le cas d'un garçon de quatre ans qui s’est présenté avec une récente limitation de l’ouverture buccale. L'imagerie (Tdm et iRm) faisait évoquer une tumeur maligne. Le diagnostic a été histologique. L’évolution a été spectaculaire, basée sur des contrôles cliniques et iRm, a été marquée par une régression quasi totale des signes cliniques et des anomalies à l’imagerie à partir du troisième mois.Mots-clés : myofibromatose infantile, infratemporale

    Kyste hydatique du masséter: a propos d’un cas

    Get PDF
    La localisation cervico faciale et particulièrement musculaire massétérine est exceptionnelle même en zone d’endémie. Le kyste hydatique au niveau de cette localisation pose un problème de diagnostic et des difficultés thérapeutiques du fait de la présence de filets nerveux du VII. Les auteurs rapportent un cas rare de localisation primaire d’un kyste hydatique au niveau du muscle masséter.Mots clès : Kyste hydatique, face, masséter, imagerie, chirurgie

    Mucormycose rhinosinusienne a extension palatine

    Get PDF
    Les mucormycoses sont des infections fongiques, aigues, rares et souvent fatales. Elles touchent avec prédilection les sujets  immunodéprimés. La forme rhinocérébrale est la plus fréquente. Le diagnostic repose sur l’examen clinique, anatomopathologique et mycologique. L’approche thérapeutique doit être multidisciplinaire. Les auteurs rapportent l’histoire clinique d’un patient, ayant présenté une mucormycose rhinosinusienne avec atteinte du palais au décours d’une infection dentaire. A travers cette observation, ils discutent les différents aspects cliniques, les moyens du diagnostic et les modalités thérapeutiques de la mucormycose rhinocérébrale.Mots clés : Infection fongique, mucormycose rhinocérébrale, zygomycètes, pronostic, traitement

    NLRC5 promotes transcription of BTN3A1-3 genes and Vγ9Vδ2 T cell-mediated killing

    Get PDF
    BTN3A molecules-BTN3A1 in particular-emerged as important mediators of Vγ9Vδ2 T cell activation by phosphoantigens. These metabolites can originate from infections, e.g. with Mycobacterium tuberculosis, or by alterations in cellular metabolism. Despite the growing interest in the BTN3A genes and their high expression in immune cells and various cancers, little is known about their transcriptional regulation. Here we show that these genes are induced by NLRC5, a regulator of MHC class I gene transcription, through an atypical regulatory motif found in their promoters. Accordingly, a robust correlation between NLRC5 and BTN3A gene expression was found in healthy, in M. tuberculosis-infected donors' blood cells, and in primary tumors. Moreover, forcing NLRC5 expression promoted Vγ9Vδ2 T-cell-mediated killing of tumor cells in a BTN3A-dependent manner. Altogether, these findings indicate that NLRC5 regulates the expression of BTN3A genes and hence open opportunities to modulate antimicrobial and anticancer immunity

    The helicase HAGE prevents interferon-a-induced PML expression in ABCB5+ malignant melanoma-initiating cells by promoting the expression of SOCS1

    Get PDF
    The tumour suppressor PML (promyelocytic leukaemia protein) regulates several cellular pathways involving cell growth, apoptosis, differentiation and senescence. PML also has an important role in the regulation of stem cell proliferation and differentiation. Here, we show the involvement of the helicase HAGE in the transcriptional repression of PML expression in ABCB5 + malignant melanoma-initiating cells (ABCB5 + MMICs), a population of cancer stem cells which are responsible for melanoma growth, progression and resistance to drug-based therapy. HAGE prevents PML gene expression by inhibiting the activation of the JAK-STAT (janus kinase-signal transducers and activators of transcription) pathway in a mechanism which implicates the suppressor of cytokine signalling 1 (SOCS1). Knockdown of HAGE led to a significant decrease in SOCS1 protein expression, activation of the JAK-STAT signalling cascade and a consequent increase of PML expression. To confirm that the reduction in SOCS1 expression was dependent on the HAGE helicase activity, we showed that SOCS1, effectively silenced by small interfering RNA, could be rescued by re-introduction of HAGE into cells lacking HAGE. Furthermore, we provide a mechanism by which HAGE promotes SOCS1 mRNA unwinding and protein expression in vitro

    A Role for Cytoplasmic PML in Cellular Resistance to Viral Infection

    Get PDF
    PML gene was discovered as a fusion partner with retinoic acid receptor (RAR) α in the t(15:17) chromosomal translocation associated with acute promyelocytic leukemia (APL). Nuclear PML protein has been implicated in cell growth, tumor suppression, apoptosis, transcriptional regulation, chromatin remodeling, DNA repair, and anti-viral defense. The localization pattern of promyelocytic leukemia (PML) protein is drastically altered during viral infection. This alteration is traditionally viewed as a viral strategy to promote viral replication. Although multiple PML splice variants exist, we demonstrate that the ratio of a subset of cytoplasmic PML isoforms lacking exons 5 & 6 is enriched in cells exposed to herpes simplex virus-1 (HSV-1). In particular, we demonstrate that a PML isoform lacking exons 5 & 6, called PML Ib, mediates the intrinsic cellular defense against HSV-1 via the cytoplasmic sequestration of the infected cell protein (ICP) 0 of HSV-1. The results herein highlight the importance of cytoplasmic PML and call for an alternative, although not necessarily exclusive, interpretation regarding the redistribution of PML that is seen in virally infected cells

    EBV Tegument Protein BNRF1 Disrupts DAXX-ATRX to Activate Viral Early Gene Transcription

    Get PDF
    Productive infection by herpesviruses involve the disabling of host-cell intrinsic defenses by viral encoded tegument proteins. Epstein-Barr Virus (EBV) typically establishes a non-productive, latent infection and it remains unclear how it confronts the host-cell intrinsic defenses that restrict viral gene expression. Here, we show that the EBV major tegument protein BNRF1 targets host-cell intrinsic defense proteins and promotes viral early gene activation. Specifically, we demonstrate that BNRF1 interacts with the host nuclear protein Daxx at PML nuclear bodies (PML-NBs) and disrupts the formation of the Daxx-ATRX chromatin remodeling complex. We mapped the Daxx interaction domain on BNRF1, and show that this domain is important for supporting EBV primary infection. Through reverse transcription PCR and infection assays, we show that BNRF1 supports viral gene expression upon early infection, and that this function is dependent on the Daxx-interaction domain. Lastly, we show that knockdown of Daxx and ATRX induces reactivation of EBV from latently infected lymphoblastoid cell lines (LCLs), suggesting that Daxx and ATRX play a role in the regulation of viral chromatin. Taken together, our data demonstrate an important role of BNRF1 in supporting EBV early infection by interacting with Daxx and ATRX; and suggest that tegument disruption of PML-NB-associated antiviral resistances is a universal requirement for herpesvirus infection in the nucleus

    Genome-Wide Screen of Three Herpesviruses for Protein Subcellular Localization and Alteration of PML Nuclear Bodies

    Get PDF
    Herpesviruses are large, ubiquitous DNA viruses with complex host interactions, yet many of the proteins encoded by these viruses have not been functionally characterized. As a first step in functional characterization, we determined the subcellular localization of 234 epitope-tagged proteins from herpes simplex virus, cytomegalovirus, and Epstein–Barr virus. Twenty-four of the 93 proteins with nuclear localization formed subnuclear structures. Twelve of these localized to the nucleolus, and five at least partially localized with promyelocytic leukemia (PML) bodies, which are known to suppress viral lytic infection. In addition, two proteins disrupted Cajal bodies, and 19 of the nuclear proteins significantly decreased the number of PML bodies per cell, including six that were shown to be SUMO-modified. These results have provided the first functional insights into over 120 previously unstudied proteins and suggest that herpesviruses employ multiple strategies for manipulating nuclear bodies that control key cellular processes

    Downregulated miR-195 Detected in Preeclamptic Placenta Affects Trophoblast Cell Invasion via Modulating ActRIIA Expression

    Get PDF
    Preeclampsia (PE) is a pregnancy-specific syndrome manifested by on-set of hypertension and proteinuria after 20 weeks of gestation. Abnormal placenta development has been generally accepted as initial cause of the disorder. Recently, miR-195 was found to be down-regulated in preeclamptic placentas compared with normal pregnant ones, indicating possible association of this small molecule with placental pathology of preeclampsia. By far the function of miR-195 in the development of placenta remains unknown.Bioinformatic assay predicted ActRIIA as one of the targets for miR-195. By using Real-time PCR, Western blotting and Dual Luciferase Assay, we validated that ActRIIA was the direct target of miR-195 in human trophoblast cells. Transwell insert invasion assay showed that miR-195 could promote cell invasion in trophoblast cell line, HTR8/SVneo cells, and the effect could be abrogated by overexpressed ActRIIA. In preeclamptic placenta tissues, pri-miR-195 and mature miR-195 expressions were down-regulated, whereas ActRIIA level appeared to be increased when compared with that in gestational-week-matched normal placentas.This is the first report on the function of miR-195 in human placental trophoblast cells which reveals an invasion-promoting effect of the small RNA via repressing ActRIIA. Aberrant expression of miR-195 may contribute to the occurrence of preeclampsia through interfering with Activin/Nodal signaling mediated by ActRIIA in human placenta

    Disruption of PML Nuclear Bodies Is Mediated by ORF61 SUMO-Interacting Motifs and Required for Varicella-Zoster Virus Pathogenesis in Skin

    Get PDF
    Promyelocytic leukemia protein (PML) has antiviral functions and many viruses encode gene products that disrupt PML nuclear bodies (PML NBs). However, evidence of the relevance of PML NB modification for viral pathogenesis is limited and little is known about viral gene functions required for PML NB disruption in infected cells in vivo. Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes cutaneous lesions during primary and recurrent infection. Here we show that VZV disrupts PML NBs in infected cells in human skin xenografts in SCID mice and that the disruption is achieved by open reading frame 61 (ORF61) protein via its SUMO-interacting motifs (SIMs). Three conserved SIMs mediated ORF61 binding to SUMO1 and were required for ORF61 association with and disruption of PML NBs. Mutation of the ORF61 SIMs in the VZV genome showed that these motifs were necessary for PML NB dispersal in VZV-infected cells in vitro. In vivo, PML NBs were highly abundant, especially in basal layer cells of uninfected skin, whereas their frequency was significantly decreased in VZV-infected cells. In contrast, mutation of the ORF61 SIMs reduced ORF61 association with PML NBs, most PML NBs remained intact and importantly, viral replication in skin was severely impaired. The ORF61 SIM mutant virus failed to cause the typical VZV lesions that penetrate across the basement membrane into the dermis and viral spread in the epidermis was limited. These experiments indicate that VZV pathogenesis in skin depends upon the ORF61-mediated disruption of PML NBs and that the ORF61 SUMO-binding function is necessary for this effect. More broadly, our study elucidates the importance of PML NBs for the innate control of a viral pathogen during infection of differentiated cells within their tissue microenvironment in vivo and the requirement for a viral protein with SUMO-binding capacity to counteract this intrinsic barrier
    corecore